Day 1 NOTES- Solving Exponential Equations

An **exponential equation** is an equation containing one or more expressions that have a variable as an exponent. When solving exponential equations, you want to rewrite the equations so they have the same bases. If they have the same bases, you set the exponents equal to each other.

If $b^x = b^y$, then x = y

Solving Equations with SAME Bases

a. $3^{3x-7} = 3^{x+1}$ b. $\left(\frac{1}{2}\right)^x = \left(\frac{1}{2}\right)^{4x-12}$ c. 7 $^{3x+8}$	+8 = 7 2x - 5
---	---------------

d. $2^{7x-6} = 2^{5x+2}$

e. $5^{3x-1} = 5^3$

f. $5^{-2x} = 5^{3x-10}$

Solving Equations with Different Bases

EXAMPLE 2	Solving Exponential Equations with Unlike Bases
EAGMENT LE 2	Solving Exponential Equations with online bases

a. $5^x = 125$	Write the equation.	b. $4^x = 2^{x-3}$	Write the equation.	c. $9^{x+2} = 27^x$	Write the equation.
$5^x = 5^3$	Rewrite 125 as 5 ³ .	$(2^2)^x = 2^{x-3}$	Rewrite 4 as 2 ² .	$(3^2)^{x+2} = (3^3)^x$	Rewrite 9 as 3 ² and 27 as 3 ³ .
x = 3	Equate the exponents.	$2^{2x} = 2^{x-3}$	Power of a Power Property	$3^{2x+4} = 3^{3x}$	Power of a Power Property
	Station of the second state of the second	2x = x - 3	Equate the exponents.	2x + 4 = 3x	Equate the exponents.
		x = -3	Solve for x.	4 = x	Solve for x.

When the bases are not the same, you can use the following table to help you re-write the bases so they are the same.

			Powers	
		2	3	4
	0	0	0	0
	1	1	1	1
	2	4	8	16
	3	9	27	81
Bases	4	16	64	256
ses	5	25	125	625
	6	36	216	1296
	7	49	343	2401
	8	64	512	4096
	9	81	729	6561
	10	100	1000	10000

Get comfortable with using the table by rewriting the following numbers with the specified base:

a. 16 with base of 2:

b. 16 with a base of 4:

c. 125 with a base of 5:

d. 81 with a base of 3:

e. 64 with a base of 4:

Examples: Solving Equations with DIFFERENT bases

a. $2^{2m} = 16$	b. 5 ^{3x} = 125	c. 3 ^{5x-6} = 81

d. $2^{3x} = 4^{x+1}$ e. $6^{3x-1} = 36^{x+7}$ f. $9^{x-1} = 27^{x-4}$

h.
$$8^{2x} = 16^3$$
 j. $25^{x+2} = 625^{2x-10}$