Rational and Irrational Numbers Notes

Rational Numbers:

Can be expressed as the quotient of two integers (i.e. a fraction) with a denominator that is not zero.
Many people are surprised to know that a repeating decimal is a rational number.

Examples: -5, $0,7,3 / 2,0 . \overline{26}$

- $\sqrt{9}$ is rational - you can simplify the square root to 3 which is the quotient of the integers 3 and 1 .

Irrational Numbers:

Can't be expressed as the quotient of two integers (i.e. a fraction) such that the denominator is not zero.

Examples: $\sqrt{7}, \sqrt{5}, \pi, 0.34989238 \ldots 0.120102001211 \ldots, 3.14151692345 \ldots$,

Sort the numbers into rational or irrational. Write the numbers in the appropriate bubble.

Directions: For each number shown, classify it as either rational or irrational, then tell whether or not it is terminating or repeating.
(circle one)
11) -0.6
12) $\sqrt{100}$
13) $\frac{2}{5}$
14) $-\frac{2}{3}$
15) $0.35217534 \ldots$
rational or irrational
(circle one) terminating, repeating, or neither terminating, repeating, or neither terminating, repeating, or neither terminating, repeating, or neither terminating, repeating, or neither

Sometimes, Always, or Never

Decide if each of the following statements is sometimes, always, or never true. Come up with a few examples or counterexamples to prove your point.

1. Rational + Rational = Rational					2. Rational + Irrational = Irrational				
		Rational					Rational		
	+	5	1/2	0		+	5	$1 / 2$	0
	5					$\sqrt{2}$			
	$1 / 2$					π			
3. Irrational + Irrational = Irrational					4. Rational \times Rational = Rational				
		Irrational					Rational		
	+	$\sqrt{2}$	$-\sqrt{3}$	π		x	5	1/2	-1
$\begin{aligned} & \overline{0} \\ & \text { 을 } \\ & \text { 은 } \end{aligned}$	$\sqrt{2}$				$\begin{aligned} & \overline{0} \\ & \text { 은 } \\ & \text { 을 } \end{aligned}$	5			
	π					1/2			
5. Rational \times Irrational = Irrational					6. Irrational \times Irrational = Irrational				
		Rational					Irrational		
	x	5	1/2	-1		X	$\sqrt{2}$	$-\sqrt{3}$	π
	$\sqrt{2}$					$\sqrt{2}$			
	$-\pi$					π			

*If you ever multiply an irrational number by 0 (which is a rational number), your outcome will always be 0 , which is a rational number. Most of the time, when multiplying, it will say a nonzero rational number, which means 0 is excluded from the rational number set.

$$
\text { Ex. } \sqrt{2} \cdot 0=0 \quad \text { Ex. } \pi \cdot 0=0
$$

PRACTICE
Identify each number as rational or irrational.

1. 432.8 \qquad 2. 0.34343434 ... \qquad
2. 4.101010001 ... \qquad 4. $-0.33333 \ldots$ \qquad
3. $0.313111331 \ldots$ \qquad 6. 7.2345 \qquad
4. $\sqrt{7}$ \qquad 8. $\sqrt{16}$ \qquad
5. $\sqrt{52}$ \qquad 10. $\sqrt{3}$
6. $\sqrt{49}$
7. $\sqrt{36}$
\qquad
8. Which is an irrational number?
A $\sqrt{5} B \sqrt{9}$
C -1
D $\frac{2}{3}$
C Both
D Neither
9. Which of the following is an irrational number?
A $\sqrt{144}$
B $\sqrt{16}$
A $\frac{3}{4}$
B $\sqrt{8}$
C $\sqrt{4}$
D $\sqrt{3}$
C 3.14159265...
D $\sqrt{38}$
17) Which of the following numbers is irrational?
a) $0.252525 \ldots$
b) 0.875
c) $0.3754152 \ldots$
d) $-0.121212 \ldots$
18) Which of the following numbers is rational?
a) $\sqrt{30}$
b) $\sqrt{42}$
c) $\sqrt{64}$
d) $-0.125374 \ldots$
